Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions.
نویسندگان
چکیده
Modern techniques in microcalorimetry allow us to measure directly the heat changes and associated thermodynamics for biomolecular processes in aqueous solution at reasonable concentrations. All these processes involve changes in solvation/hydration, and it is natural to assume that the heats for these processes should reflect, in some way, such changes in solvation. However, the interpretation of data is still somewhat ambiguous, since different non-covalent interactions may have similar thermodynamic signatures, and analysis is frustrated by large entropy-enthalpy compensation effects. Changes in heat capacity (Delta C(p)) have been related to changes in hydrophobic hydration and non-polar accessible surface areas, but more recent empirical and theoretical work has shown how this need not always be the case. Entropy-enthalpy compensation is a natural consequence of finite Delta C(p) values and, more generally, can arise as a result of quantum confinement effects, multiple weak interactions, and limited free energy windows, giving rise to thermodynamic homeostasis that may be of evolutionary and functional advantage. The new technique of pressure perturbation calorimetry (PPC) has enormous potential here as a means of probing solvation-related volumetric changes in biomolecules at modest pressures, as illustrated with preliminary data for a simple protein-inhibitor complex.
منابع مشابه
Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions.
It is widely acknowledged, and usually self-evident, that solvent water plays a crucial role in the overall thermodynamics of protein stabilization and biomolecular interactions. Yet we lack experimental techniques that can probe unambiguously the nature of protein-water or ligand-water interactions and how they might change during protein folding or ligand binding. PPC (pressure perturbation c...
متن کاملBiological Applications of Isothermal Titration Calorimetry
Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...
متن کاملCanonical thermostatics of ideal gas in the frame work of generalized uncertainty principle
The statistical consequences of minimal length supposition are investigated for a canonical ensemble of ideal gas. These effects are encoded in the so-called Generalized Uncertainty Principle (GUP) of the second order. In the frame work of the considered GUP scenario, a unique partition function is obtained by using of two different methods of quantum and classical approaches. It should be noti...
متن کاملThermodynamic Quantities of Square-Well Gases at Isobaric Process
The thermodynamic functions for square-well gases evaluated till the third virial coefficient are investigated at an isobaric process. Some thermodynamic functions are analytically expressed as functions of intensive variables, temperature, and pressure. Some thermodynamic quantities for H2O are calculated numerically and drawn graphically. In critical states, the heat capacity, thermal expansi...
متن کاملHeat Capacity and Thermodynamic Functions of Ni36Nb24Zr40 Glassy Alloy
The heat capacity of a Ni36Nb24Zr40 glassy alloy was measured by adiabatic calorimetry from 13 to 300K. The smoothed values of molar heat capacity were calculated from the data using a least-squares method. The standard enthalpy, entropy, and Gibbs energy were calculated from the smoothed heat capacity values. Assuming Hð0Þ 1⁄4 0 and Sð0Þ 1⁄4 0 at 0K, the heat capacity, enthalpy, entropy, and G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical chemistry
دوره 93 2-3 شماره
صفحات -
تاریخ انتشار 2001